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Abstract— To exceed fields of 10 T in accelerator magnets, 

brittle superconductors like A15 Nb3Sn and Nb3Al or ceramic 

High Temperature Superconductors have to be used. For such 

brittle superconductors it is not their maximum tensile yield 

stress that limits their structural resistance as much as strain 

values that provoke deformations in their delicate lattice, which 

in turn affect their superconducting properties. Work on the 

sensitivity of Nb3Sn cables to strain has been conducted in a 

number of stress states, including uniaxial [1-5] and multi-axial 

[6-8], producing usually different results. This has made the need 

of a constituent design criterion imperative for magnet builders. 

In conventional structural problems an equivalent stress model is 

typically used to verify mechanical soundness. In the 

superconducting community a simple scalar equivalent strain to 

be used in place of an equivalent stress would be an extremely 

useful tool. As is well known in fundamental mechanics, there is 

not one single way to reduce a multiaxial strain state as 

represented by a 2nd order tensor to a scalar. The conceptual 

experiment proposed here will help determine the best scalar 

representation to use in the identification of an equivalent strain 

model. 

 
Index Terms— Equivalent strain, uni-axial stress state, multi-

axial stress state, critical current 

 

I. INTRODUCTION 

ORK in literature on the sensitivity of Nb3Sn cables to 

strain has been conducted in a number of stress states, 

including uniaxial [1-5] and multi-axial [6-8] stress states, 

using some very different experimental setups. In order to 

determine a model that assigns to each tensor a scalar 

representation, we need data exploring all the dimensions of 

the tensor by means of an experiment that provides consistent 

and controlled conditions. For instance, for a 2D problem, we 

would need two load cases that produce a linearly independent 

strain tensor. As pointed out, the strain tensor should reach 

closer to the physics of the phenomenon than the stress tensor, 

since it is lattice deformations that affect the superconductor's 

properties. 

II. EQUIVALENT STRAIN MODELS 

Transport properties measurements in [1-8] were based on 

the principle of applying transverse pressure on a sample and 
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then measuring its critical current Ic. We can think of at least 

two different boundary conditions for the cable, which may 

produce different current density performances: plane stress 

with free sides, and plane stress with constrained sides (Fig. 

1). 

 

 
Fig. 1. Uni-axial case A, free sides (left), and multi-axial case B (right). 

 

The first load case, uni-axial case A, represented in Fig. 1 

(left), has yy = - p and xx = zz = 0. It can therefore be 

represented by the matrix: 
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The strain is given by: 
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where   is the Poisson coefficient and E the Young modulus. 

The second load case, multi-axial case B, represented in 

Fig. 1 (right), has yy = - p, xx = -  p and zz = 0. To 

generalize this load case, we suppose to give a preload on the 

x direction equal to xx0. The strain tensor can then be 

represented by: 
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The following step defines a list of three possible equivalent 

strain models. For each equivalent strain model, a prediction 

of the performance of load case B with respect to load case A 

can be made. This prediction can then be matched to the 

experiment outcome to determine which model best describes 

the real phenomenon. 
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A. Maximum Absolute Eigenvalue, or max| i | ,   

which is p/E in case A, and  

 









 000

2 ,)1(,)1(max xxxxxx
E

p

E

p
      

 

in case B, therefore the candidate equivalent strains are: 
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B. Maximum Angular Deformation, 

i.e. the maximum diameter of the Mohr’s circles of strain, or 

max | i - j | , gives the following candidate equivalent strains: 
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C. Maximum Angular Deformation on the Cross Sectional 

Plane, 

i.e. an equivalent strain proportional to the modulus of the 

difference between the principal stresses on the cross-sectional 

plane, or mod | 1 - 2 | , produces the following candidate 

equivalent strains: 
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III. MODELS PREDICTIONS 

A. Maximum Eigenvalue 

In Fig. 2 the equivalent strains are shown for the Maximum 

Eigenvalue model as functions of the transverse pressure, for a 

fixed Poisson coefficient of 0.3, and a Young's Modulus of 40 

GPa. For load case B, xx0 = -0.001. To predict the effect of 

constraining the sample on the Ic of the superconducting cable 

according to each model, the Ic data obtained from the uni-

axial experiment can be used. The Ic obtained in the uni-axial 

test for increasing transverse pressure values is correlated to 

the equivalent strain value indicated by each model. This is 

shown for instance in Fig. 3 for the Maximum Eigenvalue 

representation, where data from a Restack Rod Process Nb3Sn 

conductor were used. The correlation found for each model 

between Ic and equivalent strain is then used to predict the Ic in 

the case of the constrained sample (multi-axial stress state). 

The prediction obtained for the Maximum Eigenvalue model 

is shown in Fig. 4 in the same graph as the uni-axial data. This 

model predicts a lower sensitivity to transverse pressure with 

respect to the uni-axial configuration. 

 

 
Fig. 2. Equivalent strains as a function of transverse pressure at fixed Poisson 

coefficient (  = 0.3) for cases A and B in the Maximum Eigenvalue 

representation. 

 

 
Fig. 3. Correlation between the critical current obtained in the uni-axial test 

for increasing transverse pressure values with the equivalent strain indicated 

in the Maximum Eigenvalue representation. 

 

 
Fig. 4. Predictions of normalized critical current vs. transverse pressure for a 

constrained sample according to the Maximum Eigenvalue strain model. 

 

B. Maximum Angular Deformation 

In Fig. 5 the equivalent strains are reported for the 
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Maximum Angular Deformation model as functions of the 

transverse pressure, for a fixed Poisson coefficient of 0.3, and 

a Young's Modulus of 40 GPa. For load case B, xx0 = -0.001. 

The prediction obtained for the Maximum Angular 

Deformation model is shown in Fig. 6 in the same graph as the 

uni-axial data. This model predicts that one would find the 

same sensitivity to transverse pressure in the uni-axial and 

multi-axial states. 

  

 
Fig. 5. Equivalent strains as a function of transverse pressure at fixed Poisson 

coefficient (  = 0.3) for cases A and B in the Maximum Angular Deformation 

representation. 

 

 
Fig. 6. Predictions of normalized critical current vs. transverse pressure for a 

constrained sample according to the Maximum Angular Deformation strain 

model. 

C. Maximum Angular Deformation on the Cross Section 

In Fig. 7 the equivalent strains are reported for the model of 

Maximum Angular Deformation on the cross section as 

functions of the transverse pressure, for a fixed Poisson 

coefficient of 0.3, and a Young's Modulus of 40 GPa. For load 

case B, xx0 = -0.001. The prediction obtained for the model 

of Maximum Angular Deformation on the cross section is 

shown in Fig. 8 in the same graph as the uni-axial data. This 

model predicts the largest difference in transverse pressure 

sensitivity between the uni-axial and the multi-axial state. 

The experiment herein proposed of testing the same sample 

in uni-axial and multi-axial configurations is presently just a 

conceptual experiment. Using data in literature can be 

attempted to check whether they allow determining the 

soundness of any equivalent strain model. Fig. 9 shows 

predictions of normalized critical current vs. transverse 

pressure for a constrained sample using the Maximum 

Eigenvalue model and the model of Maximum angular 

deformation on the cross section compared with uni-axial data 

on a Modified Jelly-Roll (MJR) cable [4] and the test of an 

older MJR cable [8]. 

 

 
Fig. 7. Equivalent strains as a function of transverse pressure at fixed Poisson 

coefficient (  = 0.3) for cases A and B in the Maximum angular deformation 

on the cross section representation. 

 

 
Fig. 8. Predictions of normalized critical current vs. transverse pressure for a 

constrained sample according to the Maximum angular deformation on the 

cross section strain model.  

 

IV. CONCLUSIONS 

Whereas the Maximum Angular Deformation model 

predicts no difference in critical current performance between 

samples in uni-axial and multi-axial stress states at same 

transverse pressure, the Maximum angular deformation on the 

cross sectional plane is the model that predicts the largest 

difference. Existing data on even similar conductors tested in 

different setups do not allow discerning the best model. A 

controlled experiment to represent multi-axial load case B 

would point to whether one of these or other equivalent strain 

models represented correctly the electrical performance of 

brittle superconducting materials. If so, the successful 

equivalent strain model could be used as a constituent criterion 
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in magnet design. In addition, by representing cable transport 

properties as a function of such equivalent strain rather than as 

a function of transverse pressure, the various experimental 

setups where samples are subjected to different stress states 

should provide more consistent results. 

 

 
Fig. 9. Predictions of normalized critical current vs. transverse pressure for a 

constrained sample using the Maximum Eigenvalue model and the model of 

Maximum angular deformation on the cross section compared with uni-axial 

data on a MJR cable [4] and a MJR cable test [8]. 
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